

Aberration-corrected imaging and spectroscopy for multidisciplinary materials characterization

Lothar Houben

Picker Research Chair in Electron Microscopy

Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel

Electron Microscopy Unit

Core facility for Life Science and Materials Science Microscopy

Advanced light microscopy

Micro CT

Biological FIB-SEM

Biological SEM

Material science FIB-SEM

Material science SEM

Material science TEM

Biological TEM

Staff

PhD level Technician Admin

13 2 1++

Users -Pls/Groups

2022	2023	2024
84	82	83

Cryo lamellae preparation for Cryo TEM/STEM

Instruments in Service

2022	2023	2024
47	54	44

Multimodal characterisation

Cross-discipline Characterisation

Genetic regulation of **guanine crystal formation** in pigment cells in zebrafish.

New low-dimensional **Axion Insulators** for quantum phenomena and fault-tolerant quantum devices

Practical Considerations for High-resolution Microscopy

Sample limitations

Dose limitation, preparation limitations, stability and contamination

Achieving the objective

Which information do you seek and can you get it from your sample?

The readiness factor (be ready when the sample is)

Sample limitations

Radiation damage

charging, heating, radiolysis (e-/e-interaction), knock-on damage (e-/nucleus)

breaking of chemical bonds,
structural damage on atomic scale,
longer-range order disruption of
structure,
mass loss of chemical elements

- K. Nordlund, Journal of Nuclear Materials 512 (2018) 450479
- R. Egerton, Micron 119 (2019); Microscopy Today 29 (2021) 56.
- C. Russo, MRS Bulletin 44 (2019) 935

Preservation of the material context

preparation of thin transparent samples (cutting, FIB-milling, drying) transfer through ambient

structural and morphological artefacts, alteration of chemistry, phases, order

Dose-limited resolution: Extreme case of a resistant material

Misfit layer compound nanotube

cumulation up to 1127 frames => spatial resolution for localisation of Se, La, Ta

Pixel size: 21.1 pm Beam Current: 200 pA

1127 frames

Array Size: 752x607 Dwell time: 5 us Shaping time: 3 us

Total acquisition time: 1 h 10 min

HRTEM imaging of beam sensitive materials ...

Organics, polymers, defects in 2D materials, surfaces

Characteristic dose D_c , equivalent fluence ($D_{ec} = D_c/e$) and damage cross section ($\sigma_d = 1/D_{ec}$) determined by several techniques (Reimer and Kohl, 2007; ^a Isaacson, 1977; ^b Hobbs, 1975a; ^c Egerton et al., 1987; ^d Pan and Crozier, 1993; ^e Li and Egerton, 2004; ^f Egerton, 2012; ^g Hooley et al., 2017; ^h Hollenbeck and Buchanan, 1990; ^s Stark et al., 1996: 7 Å spots). Unless otherwise stated, the data are for 100 keV electrons and a specimen at room temperature. The last column shows the factor by which the measured characteristic dose increases when the specimen temperature is reduced to 100 K.

Method	Material	dose $D_{\rm c}$ (C/cm ²)	$D_{\rm ec} = D_{\rm c}/e \ (e/\text{Å}^2)$	$\sigma_{\!D} \; (\mathrm{Mb}) = 100/\mathrm{D_{ec}}$	$D_{\rm c}(100)~D_{\rm c}(300)$
Fading of spots in electron diffraction patterns	Bacteriorhodopsin ^s	0.0008	0.5	200	9
	Amino acid (glycine) ^a	0.0025	1.6	64	
	Polyethylene	0.01	6.0	16	
	Coronene ^e	0.11	70	1.5	
	Phthalocyanine (Pc)	0.2	120	0.83	
	Cu-phthalocyanine	2.5	1600	0.06	
	Chlorinated Cu-Pc	20	12000	0.008	
	ZSM-5 zeolite ^d	0.5	300	0.33	
	Calcite (200 kV) ^g	62	39,000	0.0026	

Ray Egerton, Radiation damage to organic and inorganic specimens in the TEM, Micron 119 (2019) 72-87

For comparison: TMDC or graphene - typically 10⁴-10⁵ e/A²

Organics: Low Voltage doesn't solve the knock-on problem

Ballistic displacement cross section for H in C-H, C in C-C, and S in C-S bond

$$\sigma_d = 4\pi \left(\frac{Ze^2}{4\pi\varepsilon_0 2m_0c^2}\right)^2 \frac{1-\beta^2}{\beta^4} \left\{ \frac{T_m}{E_d} - 1 - \beta^2 \ln\left(\frac{T_m}{E_d}\right) + \pi \frac{Ze^2}{\hbar c} \beta \left[2\left(\frac{T_m}{E_d}\right)^{1/2} - \ln\left(\frac{T_m}{E_d}\right) - 2 \right] \right\}$$

$$T_{max} = \frac{2ME(E + 2mc^2)}{(M+m)^2c^2 + 2ME}$$

Due to low atom mass

$$T_{\text{max}}$$
 (1H)= 188 eV @ 80kV

$$E_{\rm d}$$
 (H in C-H) = 6.1 eV

Atomic charge Z

Atomic mass M

Electron velocity $\beta = v_e/c$

Electron energy E

McKinley, Feshbach, Phys. Rev. 74 (1948) 1759

Slide data courtesy of U. Kaiser, Ulm University

Dose-limited resolution - Shot Noise Case

Back-of-the-envelope pixel signal/noise calculation following the Rose criterion:

$$s = \frac{\kappa}{(1 - f)\sqrt{N}\sqrt{DQE}}$$

s: resolution defining element

κ: detection threshold for the identification of an image feature in an image element of size s² (threshold SNR for detection)

f: fraction of electrons that contribute to the background, (1-f) is the signal N: total dose, in e⁻ per A² DQE: detective quantum efficiency

Measurement Strategies:: Maximum detection efficiency

WS₂ @ 80 kV

Left: Dynamic focal series in a Themis-Z, Gatan OneView, 400 images in 4 s while focus ramps from +12 nm to -12 nm.

Fluence 1000 e/A²

Themis-Z, AuPd, Gatan OneView, 512x512, 5ms per frame original recording, 2624 frames, 13 s total recording time 16 frame boxcar average, N=164

Themis-Z, AuPd, Gatan OneView, 512x512, 5ms per frame original recording, 2624 frames, 13 s total recording time 16 frame boxcar average, N=164

Maximum detection efficiency in Cryo-Microscopy

The aberration-corrected case

Energy-filtered **aberration-corrected** bright-field HRTEM at 200 kV, Dectris ELA

Series of 50 frames, 50 ms per frame, sum of 7 frames #34-40 Elastic channel fluence for sum of 7 frames: 21 e-/Å²

Close to NCSI focus, -10 nm

Isoguanine

When the lattice is gone before you focus ...

Search and focus: uP STEM

Search and focus: uP STEM

AC-HRTEM (low dose 21e/Å²)

Search and focus: uP STEM

AC-HRTEM (low dose 21e/Å²)

Search and focus: uP STEM

AC-HRTEM (low dose 21e/Å²)

uP 4D-STEM

Search and focus: uP STEM

AC-HRTEM (low dose 21e/Å²)

uP 4D-STEM at 4 pA

Search and focus: uP STEM

AC-HRTEM (low dose 21e/Å²)

uP STEM EDS at 50 pA

uP 4D-STEM at 4 pA

Search and focus: uP STEM

AC-HRTEM (low dose 21e/Å²)

uP STEM EDS at 50 pA

Total recording time approx.

10 min

uP 4D-STEM at 4 pA

Achieving the objective

Which information do you seek and can you get it from your sample?

- optimize conditions
- learn about potential artefacts
- learn when is your result as expected

Working with simulation helps a lot!

Challenge: Quantification

Example: EDS profiles of Te on ReSe2

Modulation in the analytical signal around atomically sharp interfaces is not necessarily atomically sharp.

high convergence angles are not favourable

Probe Channeling

5Å

channeling wave intensity in cross sectional plane on Re, t=20 nm

high convergence angles are not favourable unless samples are ultimately thin

Atomic-column EELS

Axion insulator EusIn2As6: A true Zintl-Phase

Sampling of multiple columns corresponding to the three octahedral Eu sites

=> identical electronic signature, no difference in oxidation state

Identical,

Divalent Eu Oxidation State

Effect of aberrations on images: axial coma

W. Hamm, Diploma Thesis, RWTH Aachen 2008

Effect of aberrations on images: axial coma

FEI Titan 300 kV

steps of $\sim \pi/2$ at 80 pm

STO can look non-centrosymmetric!

W. Hamm, Diploma Thesis, RWTH Aachen 2008

The human factor: Daily routine to maintain reliability

Policy at a multi-user facility

2022	2023	2024
84	82	83

Instruments in Service

2022	2023	2024
47	54	44

- No multiuser setups
- Maintain one basic alignment
- Maintain one default set of tunings

On the corrector side

- Tuning is stable
- Low maintenance
- Reproducible settings
- little issues with mode switching (on the side of the corrector)

Daily routine to maintain reliability

Maintain one default set of tunings Standard modes on a TFS TEM-STEM

Example for the daily procedure for HRSTEM

Start from default alignment data

Example for the daily procedure for HRSTEM

Loading aberration-corrector settings (probe and image-side), tune probe side (aperture & C2/C3 centering), tuning in the Ronchigram for A1 coarse, B2 via exported elements

Example for the daily procedure for HRSTEM

Tune aberration corrector (8x speed)

... ready to go ... shouldn't take more than 20 min

Questions?